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Growth probability distribution in percolation 
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Abstract. We study the growth probability distribution for a single cluster growth process 
far percolation at the percolation threshold. We find that this distribution is indistinguish- 
able from the chemical path distribution on the percolation cluster as studied by Havlin 
el 01. We also study the density profile of the percolation cluster. Using the multiscaling 
idea of Coniglio and Zannetti we calculate the fractal dimension of the percolation clusters 
from the density profile and report d,= 1.89510.005 for two dimensions and 2.50i0.01 
for three dimensions. However we do  not find any evidence of multifractal or multiscaling 
behaviour. 

What is the probability that a new particle will be a member of a growing cluster at 
a distance r from the centre when the cluster has grown up to a certain size? This 
question is important when one tries to understand the structural properties of the 
cluster as a whole and the surface structure in particular at the infinite size limit. 

For a growing cluster, growth always takes place at the surface of the cluster. The 
addition of a new particle to the surface is governed by definite rules and variation of 
these rules leads to different growth processes. As an  example, let us consider the 
diffusion limited aggregation process (DLA). In this case a cluster grows from a single 
seed, particles come from large distances in a diffusion process, and whenever one 
particle is close to the surface, it sticks to the cluster and thus growth takes place. 
Plischke and Racz [ 11 showed that surface of any growing cluster is divided into two 
distinct regions. One is the active zone, usually the outer portion of the cluster, which 
collects most of the new particles. The other is the passive zone which is the frozen 
core region around the centre, where growth has almost stopped. One can define a 
perimeter of the cluster by locating those unoccupied sites which are the neighbouring 
positions of occupied sites of the cluster and where growth can take place in principle. 
Meakin er a/ [Z] observed that in the DLA process, different perimeter sites have 
different growth probabilities and they defined a growth site probability distribition 
(CSPD) to characterize the perimeter sites according to the growth probability. Plischke 
and Racz [ l ]  studies the probability distribution P(r,  N )  of the ( N + l ) t h  particle to 
be a member of the cluster at a distance r from the origin when the cluster has grown 
up to mass N. They obtained a Gaussian distribution for this probability, characterized 
by the average radius of the growing zone (I), the width of the interface 5 and the 
radius of gyration R as function of the particle number N. 

t Present address: HLRZ c/o KFA Julich GmbH, Pastfach 1913, D-5170 Julich I, Federal Republic of 
Germany. 
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We study here these questions for percolation at the percolation threshold. We 
study cluster growth from a single seed. The algorithm was first proposed by Leath 
[3] for all clusters and later modified by Alexandrowicz [4] for a single cluster. Here 
the central seed site is occupied with probability 1. In time step one, for each of the 
nearest neighbour sites of the central seed, a random number is compared with the 
percolation threshold pc. Sites with random numbers less than the threshold are 
occupied and the other sites with random numbers greater than pc  are blocked. These 
newly occupied sites are the potential ‘parent’ sites for growth at the next time step; 
their unoccupied and unblocked neighbouring sites are compared with p< to obtain 
the growth sites for the next time step, the process continues. The chemical distance, 
I between two points on a cluster is the length of the shortest path connecting the 
points. Therefore the time, at which a site has become a member of the cluster, is 
exactly equal to the chemical distance when measured from the origin. It may happen 
that at a certain time there are no further growth sites at all and therefore growth is 
totally blocked. In this situation we discard this cluster and consider only those clusters 
which have grown up to  a certain chemical distance I , a x .  The most important difference 
between the percolation and DLA growth processes is that in the case of percolation, 
at any time all perimeter sites are equally probable to be a part of the cluster at the 
next time step, whereas in DLA some sites are more probable than others. We grow 
percolation clusters at the percolation threshold using the recent accurate estimate of 
the threshold p,=O.592746 for the square lattice [ 5 ]  and p,=0.311605 for the simple 
cubic lattice [6]. We consider only those clusters which have grown up to a chemical 
distance I,,, and we observed success rates of 0.588 and 0.325 for I,,, = 1024 and 100 
in two and three dimensions. 

We first study how the radius (r) and the width 6 of the interface of the growing 
region scales with chemical distance I 

( r ) - f ” ,  (1) 

c = m - I ” z  ( 2 )  
and the average radius of gyration R, defined as 

R = - 1’. (3) 
We calculate these quantities for the square lattice. For each cluster we keep track of 
the history of the growth and calculate the quantities for I =  16 to I,,, at the interval 
of 16 for an ensemble of 100000 clusters. For each value of I we consider only those 
particles added to the cluster at that chemical distance. We plot these three quantities 
for different chemical distances I on a double logarithmic scale (see figure 1). The 
curves are fairly straight and our estimate for the slopes are U ,  = 0.8782, v2 = 0.9062 
and v, = 0.8758. To see whether U ,  and U ,  are the same or not we plot ( r ) / f  with log 
in figure I (a) .  The curve asymptotes to a constant value for large I. We infer that ( r )  
and 6 are characterized by the same critical exponent U. 

Next we study the probability distribution of a new particle to be a member of the 
growing cluster at a distance r from the centre when the cluster has grown up to a 
certain chemical distance 1. We again consider clusters grown up to chemical distance 
i,,, and oniy ior the successhi ciusters we iook back and consider oniy those particies 
which became a member of the growing cluster at different chemical distances 1=64, 
128,256,512 and 1024 and average over 100 000 clusters. For each particle we calculate 
the distance from the origin and truncate it to the nearest integer and update the 
corresponding location in a storing array, We plot this probability P(r,  R) with r for 
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Figure 1. Double logarithmic plot of average radius ( I ) ,  the width of the interface I =  
( ? - ( r ) '  of the growing region and the average radius R of gyration of the whole cluster 
with chemical distance 1. The slopes of all three curves are almost identical. 
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Figure I(*). The ratio ( I ) / [  is plotted against log 1. This ratio is tending towards a constant 
for large "slue6 of I. 
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different radius of gyrations corresponding to different chemical distances I (see figure 
2). We see that on increasing chemical distance the distribution becomes more and 
more flat and consequently the height decreases. To get a scaled distribution we contract 
the abscissa by R and expand ordinate by R. On a plot of P(r ,  R )  x R vs ( r / R )  we 
see a very nice data collapse of data for all five different chemical distances (see 
figure 3). 

Havlin et al [7] studied the probability distribution of the end to end distance of 
a self-avoiding walk (SAW)! which is defined by the shortest oath between the two 
points (i.e., the chemical distance), on the percolation clister. Here, the scaled (x  = r / ( r ) )  
distribution follows the following form: 

S S Manna and N Jan 

P ( x ) = A P  exp(-ax*). (4) 

probabii&y distnbriiioi, is ihe disiribu- 
Comparing this distribution with the distribution of SAWS [8] they recognized the 
exponeni = ;;;; - .), in oLii caje, ihe 
tion of chemical paths which start from the centre. We get a very nice fit to the form 
(4) with the values of the constants A = 1.15, g = 2.5, a = 2.7, c$ = 9.8 and we had to 
contract the x axis by a factorf= 0.485 because we used x = r / R  and not r / ( r ) .  These 
values are in excellent agreement with those reported in reference [7]. 

Similar growth probability distribution on the simple cubic lattice at the percolation 

After a similar scaling as before with the radius of gyration R we plot P(r ,  R )  and 
r / R  (see figure 5). Here also we see very well data collapse. Similar fit with the 
functional form in (4) is tried and the constants obtained are A = 1.0, g = 2.7, a = 95.0 
and 6 = 3.4 where x axis is contracted by a factor f =  0.175. Unliked the case of the 
square lattice, the asymmetry is almost absent in the three dimensional distribution. 

.L---L-I-I :.. -+..ALA c-- - ~ - - ; - - t  A:-+~----  1 --MI nn cn Qn --A Inn I-.... c -..- ~ A\  
L , , , ~ D , L " I U  ,a a L " u I G U  I", CIICLIIIuaLI U I D L L L . L I I I  I - L", T", "", U" PllU I"" ,"CC L 1 6 U ' L  7,. 

m s  is. reflec!ed in the very high %?!..e nf the Cnl?stl"t n i" the fitti": distrib"tin". 

0.04- 

0.03- 

, 

0 
r 

Figure 2. T h e  probability distribution P ( r ,  R )  of a new growth site to be a member of the 
growing cluster at a chemical distance I (corresponding to the radius of gyration R )  is 
plotted far different chemical distances /=64, 128, 256, 512 and 1024 from left to right. 
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Figure 3. Collapse of the data used in figure 2 for the growth site probability distribution 
P ( r ,  R ) .  The abscisa is now r / R  whereas the ordinate is P(r ,  R )  x R. 
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Figure4. Similar plot ofthe growth site probability distribution as in figure 2 but forsimple 
cubic lattice. Curves from left to the right are for the chemical distances I=20,  40, 60, 80 
and 100. 
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Figure 5. Similar data collapse as in figure 3 but for simple cubic lattice. 

Next we calculate the density profile g(r ,  R )  in a percolation cluster grown up to 
chemical distance I, as a function of r. For that we again generate clusters up to a 
maximum size I,,, = 1024 and then consider clusters at five different stages of growth 
with (values of64,128,256,512and 1024. Foreach /values wesuperpose N=100000 
clusters over one another. If a site is occupied n times out of N configurations, then 
the average density at that site is n / N .  We integrate this density over all sites on an 
annular ring of width d r  between r and r + d r  and divide this value by the number of 
sites in the ring to get g( r, R ) .  Average density calculated in this way actually represents 
the site occupation correlation between the central site and any other site at a distance 
r. We plot g(r ,  A )  vs r for different I values (see figure 6). Here r=O corresponds to 
the origin for which the density is always 1 and then it decreases with increasing r. 
Simular density profile is studied on the simple cubic lattice for I = 20, 40, 60, EO and 
100.(see figure 7). 

Recently Coniglio and Zannetti [ 9 ]  proposed a multiscaling form for the density 
profile g(r ,  R )  for the growth of any fractal object of average size R. From group 
theoretical arguments they found that the density profile should follow a multiscaling 
form 

g ( r / R )  = r - d + D ' r ' R ) A ( r / R ) .  ( 5 )  
This multiscaling form says that every region within the fractal object with a fixed 
value of x = r / R  has a distinct fractal dimension D ( r / R )  rather than a constant fractal 
dimension D for the cluster as a whole. In fact Coniglio and Zannetti note that scale 
invariance cannot predict whether a single exponent ( D ( r / R )  = a  constant) or many 
exponents are present in the growing ciuster. Tiis may oniy be determined from 
experimental data or further theoretical calculations. Following this idea we calculated 
g(x) for a fixed value of x but for different chemical distances corresponding to 
different r and R values. We plot them in a double logarithmic scale for all five chemical 
distances and the slope of this straight line gives us the value of D(x) - d. To get the 
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Figure 6. Density profiles g ( r ,  R )  for chemical distances I =64. 128,256, 512 and 1024 an 
the square lattice. 

r 

Figure 7. Density profiles p(r, R )  for chemical distances I =20 ,  40, 60, 80 and 100 on the 
simple cubic lattice. 
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fractal dimension at the central region (x+O) one needs big clusters to reduce the 
error. We consider only two values of the chemical distances I = 512 and I = 1024 and 
estimate D ( x )  - d by calculating log(g,(x)/g,(x))/log(r,/r,). We varied the value of 
x between x = 0.05 and 1.5 at intervals of 0.05 and corresponding values of D ( x )  - d 
are plotted with x (see figure 8 ( a ) ) .  We fit a straight line through the first five points 
and extrapolation to x + 0 gives the value of D(0) - d = -0.105. The fractal dimensional- 
ity of the percolating cluster is identical to the magnetic exponent yh of the q-state 

S S Manna and N Jan 

Potts mode! in the limit q +  1 !Kapltu!r?i!? e! n! [IO! znd references therein! 

d,= = d -PI Y. 
In two dimensions Nienhius [ 111 showed via RG mappings that y, is 91/48 = 1.89583 
which is in good agreement with our numerical value of 1.895. 
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Figure 8(@. D ( x ) - d  is plotted against x for the square lattice. The extrapolated value as 
x = o  is 0.105. 

In three dimensions we get a strongly fluctuating curve (see figure 8 ( b ) )  where we 
have used data for the chemical distances I = 80 and 100 to get D ( x )  - d. If one tries 
to pass a straight line through this fluctuating data, say from the x = 0.05 to 0.40 or 
from 0.05 to 0.65, and extrapolate them to x + 0 one gets Diu) - d = -0.499 and -0.5i 1 .  
Thus the fractal dimensionality of the percolating cluster in three dimensions is 
2.50+0.01 which is in good agreement with other numerical reports. With this analysis 
we would like to stress that the multiscaling distribution ( 5 )  is a good method of 
calculating the fractal dimension of a cluster. About multiscaling, we see that our 
results (figures 8 ( a )  and 8 ( b ) )  show very little evidence of such scaling in the percolation 
growth process. 

Finally we would like to discuss the possible multifractality in this growth process. 
If a growth process is characterized by a probability distribution, whose different 
moments scale with different exponents and these exponents vary in a nonlinear fashion, 
the system is said to possess multifractal behaviour. Here we study two probability 
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Figure Wb). D ( x ) - d  is platted against x far the simple cubic lattice. The extrapolated 
value as x=O is 0.50. 

distributions, P(r, R )  and g(r, R) ,  and we are unable to detect multifractality. 
Exponents characterizing the different moments vary in a linear manner, indicative of 
normal ‘gap’ scaling. 

In conclusion we have studied the growth probability distribution for the single 
cluster growth process for percolation at the percolation threshold for both two and 
three dimensions. For two dimensions, we found this distribution indistinguishable 
from the distribution function obtained by Havlin et a/ 171 for the chemical path 
distribution on the percolation cluster. We have presented evidence that the average 
radius of the growing zone and the width of the interface scale with the same exponent 
v. We have also shown that the multiscaling form by Coniglio and Zannetti [9] can 
be used to get the fractal dimension accurately. We do not find any evidence of 
multiscaling or multifractality in this growth process. 

One of us (SSM) gratefully acknowledges financial support through a St Francis Xavier 
University post-dostoral fellowship. NJ is supported by a NSERC (Canada) grant. 
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